

EU-Japan Energy Business Seminar 24th April 2019, Tokyo, Japan

H2 Gas Turbine for Hydrogen Society

Satoshi Tanimura

Mitsubishi Hitachi Power Systems, LTD.

Contents

- 1. Company introduction
- 2. H2 related technologies in MHI group
- 3. MHPS H2 Gas Turbine development
- 4. EU-Japan collaborative project
- 5. Summary

1. Company introduction

MHPS is a company for the thermal power generation system in MHI group

2. H2 related technologies in MHI group

All 3 stages (Production/Carrier/Demand) are the key to realize hydrogen society

Global Hydrogen Supply Chain

2. H2 related technologies in MHI group

As MHI group, we can contribute in each stage of global hydrogen supply chain

3. MHPS H2 Gas Turbine development

Existing Gas Turbine can run with hydrogen by limited modifications to combustion parts

Advanced Technology

MHPS's "JAC"
Super High Efficiency GTCC

Efficiency: ~65% Availability: 99.5%

3. MHPS H2 Gas Turbine development

H2 Gas Turbine combustion technology development

Туре		Low NOx tech.	Turbine Inlet Temp.	H2 density	Schedule	
Ready	Diffusion	N2 dilution, Water/Steam injection	1200 ~ 1400℃	~ 100%	1970 Cogen/IGCC (31 units, > 3 mil hours experience)	2025 Magnum H2 conversion
	Pre-mix	Dry	1600℃	~ 30%	<u>te</u>)% co-firing est completed IEDO PJ)
Under development	Multi-Cluster	Dry	1650℃	~ 100% (target)		target ~2024 Under development (NEDO PJ)

^{*}This presentation is based on results obtained from a project commissioned by NEDO.

4. EU-Japan collaborative project

H2M (Hydrogen to Magnum) project: a first step in the development of a low-carbon H2 economy

• Goal: 1 Magnum CCGT (M701F) on blue hydrogen by 2025

Location H₂ plant: Eemshaven, the Netherlands

Supply to other users
 (Transport/Industry/Housing)

Gradual transition to green hydrogen

- Kick-start H₂ economy:
 - Realisation of hydrogen infrastructure
 - Development of hydrogen demand
- CO₂ emission reduction: up to 2 Mt/yr

Source and courtesy Vattenfall

5. Summary (1/2)

(1) MHPS H2 Gas Turbine will contribute to Hydrogen Society

Fuels H2 infrastructure development

- Large H2 demand for power generation
- Straightforward repurposing of existing assets
- Gas Turbine can be fueled by H2 transported by Ammonia / MCH / LH2

Reduce CO2 at large scale

- Large CO2 reduction (1 CCGT (440MW) = 2,000,000 FCV)

Hydrogen Society

5. Summary (2/2)

(2) MHI group can contribute to realize global H2 supply chain

(3) Public-Private Partnerships are essential to realize the technology roll-out

Power for a Brighter Future